Optimal constant weight codes over Zk and generalized designs

نویسنده

  • Tuvi Etzion
چکیده

We consider optimal constant weight codes over arbitrary alphabets. Some of these codes are derived from good codes over the same alphabet, and some of these codes are derived from block design. Generalizations of Steiner systems play an important role in this context. We give several construction methods for these generalizations. An interesting class of codes are those which form generalized Steiner systems and their supports form ordinary Steiner systems. Finally, we consider classes of codes which are MDS constant weight codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructions for generalized Steiner systems GS (3, 4, v , 2)

Generalized Steiner systems GS (3, 4, v, 2) were first discussed by Etzion and used to construct optimal constant weight codes over an alphabet of size three with minimum Hamming distance three, in which each codeword has length v and weight four. Not much is known for GS (3, 4, v, 2)s except for a recursive construction and two small designs for v = 8, 10 given by Etzion. In this paper, more s...

متن کامل

Optimal Doubly Constant Weight Codes

A doubly constant weight code is a binary code of length n1 + n2, with constant weight w1 + w2, such that the weight of a codeword in the first n1 coordinates is w1. Such codes have applications in obtaining bounds on the sizes of constant weight codes with givenminimum distance. Lower and upper bounds on the sizes of such codes are derived. In particular, we show tight connections between opti...

متن کامل

Optimal linear codes, constant-weight codes and constant-composition codes over $\Bbb F_{q}$

Optimal linear codes and constant-weight codes play very important roles in coding theory and have attached a lot of attention. In this paper, we mainly present some optimal linear codes and some optimal constant-weight codes derived from the linear codes. Firstly, we give a construction of linear codes from trace and norm functions. In some cases, its weight distribution is completely determin...

متن کامل

Constructions of optimal quaternary constant weight codes via group divisible designs

Generalized Steiner systems GS(2, k, v, g) were first introduced by Etzion and used to construct optimal constant weight codes over an alphabet of size g + 1 with minimum Hamming distance 2k − 3, in which each codeword has length v and weight k. As to the existence of a GS(2, k, v, g), a lot of work has been done for k = 3, while not so much is known for k = 4. The notion k-GDD was first introd...

متن کامل

Some Optimal Codes From Designs

The binary and ternary codes spanned by the rows of the point by block incidence matrices of some 2-designs and their complementary and orthogonal designs are studied. A new method is also introduced to study optimal codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 169  شماره 

صفحات  -

تاریخ انتشار 1997